螺旋状的扭曲光或可推动下一代电子技术发展

首页     新闻     螺旋状的扭曲光或可推动下一代电子技术发展
 

 

 

 

“这就像是在玩一套形状各异的乐高积木,而不只是一个个规则的长方体。”

——理查德·弗兰德

 

“It’s like working with a Lego set with every kind of shape you can imagine, rather than just rectangular bricks”

——Richard Friend

 

 

研究人员在有机半导体领域攻克了一个数十年来未解的难题,为电子技术的未来发展提供了新的可能。

Researchers have advanced a decades-old challenge in the field of organic semiconductors, opening new possibilities for the future of electronics.

由剑桥大学和埃因霍温理工大学牵头的研究团队成功研发出一种有机半导体,该半导体可使电子沿螺旋轨迹移动。这一发现有望提高电视和智能手机屏幕中OLED显示器的效率,或推动自旋电子学和量子计算等下一代计算技术的发展。

The researchers, led by the University of Cambridge and the  Eindhoven University of Technology, have created an organic semiconductor that forces electrons to move in a spiral pattern, which could improve the efficiency of OLED displays in television and smartphone screens, or power next-generation computing technologies such as spintronics and quantum computing.

研究人员研发的这种半导体能够发射圆偏振光,这意味着这种光携带电子 “手性”信息。大多数无机半导体(如硅)的内部结构是对称的,因此电子在其中运动时不会表现出特定方向的偏好。

The semiconductor they developed emits circularly polarised light—meaning the light carries information about the ‘handedness’ of electrons. The internal structure of most inorganic semiconductors, like silicon, is symmetrical, meaning electrons move through them without any preferred direction.

然而,在自然界中,分子往往具有手性结构,即左手型(L)或右手型(R):就像人类的双手一样,手性分子互为镜像。手性在DNA形成等生物过程中起着关键作用。但在电子学领域,要利用和控制这一特性却极为困难。

However, in nature, molecules often have a chiral (left- or right-handed) structure: like human hands, chiral molecules are mirror images of one another. Chirality plays an important role in biological processes like DNA formation, but it is a difficult phenomenon to harness and control in electronics.

研究人员们从大自然中获得灵感,巧妙地通过分子设计技巧,成功使半导体分子有序堆叠成左手型或右手型螺旋柱,从而制造出一种手性半导体。相关研究成果已发表在《科学》期刊上。

But by using molecular design tricks inspired by nature, the researchers created a chiral semiconductor by nudging stacks of semiconducting molecules to form ordered right-handed or left-handed spiral columns. Their results are reported in the journal Science.

手性半导体的一个大有前景的应用领域是显示技术。现有的显示器由于光过滤方式往往会造成大量能量损耗。而研究团队开发的手性半导体能够以减少光损耗的方式自然发光,从而使屏幕更明亮、更节能。

One promising application for chiral semiconductors is in display technology. Current displays often waste a significant amount of energy due to the way screens filter light. The chiral semiconductor developed by the researchers naturally emits light in a way that could reduce these losses, making screens brighter and more energy-efficient.

“当我刚开始研究有机半导体时,许多人都质疑它的潜力,但如今它们在显示技术领域占据重要地位。”剑桥大学卡文迪许实验室的理查德·弗兰德(Richard Friend)教授(该研究的联合负责人)表示,“与刚性的无机半导体不同,分子材料提供了极大的灵活性,使我们能够设计全新的结构,比如手性LED。这就像是在玩一套形状各异的乐高积木,而不只是一个个规则的长方体。”

“When I started working with organic semiconductors, many people doubted their potential, but now they dominate display technology,” said Professor Sir Richard Friend from Cambridge’s Cavendish Laboratory, who co-led the research. “Unlike rigid inorganic semiconductors, molecular materials offer incredible flexibility—allowing us to design entirely new structures, like chiral LEDs. It’s like working with a Lego set with every kind of shape you can imagine, rather than just rectangular bricks.”

这种半导体取材于一种名为三氮杂钌(TAT)的材料,该材料能够自组装成螺旋堆叠结构,使电子能够沿其结构呈螺旋状移动,就像螺钉的螺纹一样。

The semiconductor is based on a material called triazatruxene (TAT) that self-assembles into a helical stack, allowing electrons to spiral along its structure, like the thread of a screw.

“当被蓝光或紫外光激发时,自组装的三氮杂钌(TAT)能够发射具有强烈圆偏振的明亮绿色光——这是此前在半导体中难以实现的效果。”论文的共同第一作者、埃因霍温理工大学的马克·普罗伊思(Marco Preuss)表示,“TAT的结构不仅能够使电子进行高效移动,同时也影响了光的发射方式。”

“When excited by blue or ultraviolet light, self-assembled TAT emits bright green light with strong circular polarisation—an effect that has been difficult to achieve in semiconductors until now,” said co-first author Marco Preuss, from the Eindhoven University of Technology. “The structure of TAT allows electrons to move efficiently while affecting how light is emitted.”

研究人员通过改进OLED制造工艺,成功地将TAT集成到可工作的圆偏振OLED(CP-OLED)中。这些器件在效率、亮度和偏振度方面表现出破纪录的水平,成为同类技术中的佼佼者。

By modifying OLED fabrication techniques, the researchers successfully incorporated TAT into working circularly polarised OLEDs (CP-OLEDs). These devices showed record-breaking efficiency, brightness, and polarisation levels, making them the best of their kind.

“我们从根本上重新调整了制造OLED的标准方法,就像我们在智能手机中一样,使我们能够在稳定、非结晶的基质中实现手性结构。”剑桥大学卡文迪许实验室的共同第一作者日普帕诺·乔杜里(Rituparno Chowdhury)说道,“这为制造圆偏振LED提供了一种可行的方法,而这一直是该领域难以突破的难题。”

“We’ve essentially reworked the standard recipe for making OLEDs like we have in our smartphones, allowing us to trap a chiral structure within a stable, non-crystallising matrix,” said co-first author Rituparno Chowdhury, from Cambridge’s Cavendish Laboratory. “This provides a practical way to create circularly polarised LEDs, something that has long eluded the field.”

这项研究是弗兰德教授团队与埃因霍温理工大学伯特·梅杰(Bert Meijer)教授团队数十年合作的一部分。“这是手性半导体制造领域的一个实实在在的突破。”梅杰表示,“通过精心设计的分子结构,我们成功地将结构的手性与电子的运动耦合在一起,这是之前从未能达到的层面。”

The work is part of a decades-long collaboration between Friend’s research group and the group of Professor Bert Meijer from the Eindhoven University of Technology. “This is a real breakthrough in making a chiral semiconductor,” said Meijer. “By carefully designing the molecular structure, we’ve coupled the chirality of the structure to the motion of the electrons and that’s never been done at this level before.”

手性半导体的诞生标志着有机半导体领域的一大进步,目前该行业的市场规模已超过600亿美元(约合450亿英镑)。除了显示技术之外,这一进展还对量子计算和自旋电子学具有重要意义。自旋电子学利用电子的自旋或固有角动量来存储和处理信息,未来可能带来更快、更安全的计算系统。

The chiral semiconductors represent a step forward in the world of organic semiconductors, which now support an industry worth over $60 billion (about £45 billion). Beyond displays, this development also has implications for quantum computing and spintronics—a field of research that uses the spin, or inherent angular momentum, of electrons to store and process information, potentially leading to faster and more secure computing systems.

本研究部分得到了欧盟玛丽·居里培训网络(Marie Curie Training Network)和欧洲研究委员会(European Research Council)的资助。理查德·弗兰德(Richard Friend)是剑桥大学圣约翰学院(St John’s College)院士,日普帕诺·乔杜里(Rituparno Chowdhury )是剑桥大学菲茨威廉学院(Fitzwilliam College)成员。

The research was supported in part by the European Union’s Marie Curie Training Network and the European Research Council. Richard Friend is a Fellow of St John’s College, Cambridge. Rituparno Chowdhury is a member of Fitzwilliam College, Cambridge.

2025-03-21